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Abstract
Background: Premature ovarian insufficiency (POI) is a highly heterogeneous 
disease, and up to 25% of cases can be explained by genetic causes. The transcrip-
tion factor WT1 has long been reported to play a crucial role in ovary function. 
Wt1-mutated female mice exhibited POI-like phenotypes.
Methods and Results: In this study, whole exome sequencing (WES) was ap-
plied to find the cause of POI in Han Chinese women. A nonsense variant in the 
WT1 gene: NM_024426.6:c.1387C>T(p.R463*) was identified in a non-syndromic 
POI woman. The variant is a heterozygous de novo mutation that is very rare in 
the human population. The son of the patient inherited the mutation and de-
veloped Wilms’ tumor and urethral malformation at the age of 7. According to 
the American College of Medical Genetics and Genomics and the Association for 
Molecular Pathology (ACMG/AMP) guidelines, the novel variant is categorized 
as pathogenic. Western blot analysis further demonstrated that the WT1 variant 
could produce a truncated WT1 isoform in vitro.
Conclusions: A rare heterozygous nonsense WT1 mutant is associated with non-
syndromic POI and Wilms’ tumor. Our finding characterized another pathogenic 
WT1 variant, providing insight into genetic counseling.
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1   |   INTRODUCTION

Premature ovarian insufficiency (POI) is defined as absent 
menarche or premature depletion of ovarian follicles before 
the age of 40 years (Persani et al., 2009). POI is an extremely 
heterogeneous disorder with variable clinical presentations 
and multiple causes. It is estimated that genetic causes ac-
count for approximately 20%–25% of cases of POI (Jiao et al., 
2018). In the past decade, multiple genetic analysis meth-
ods including whole exome sequencing (WES) have offered 
great opportunities to identify pathogenic variants in POI. 
POI-associated causative genes fall within pathways critical 
for ovarian development and function, such as DNA dam-
age repair, meiosis, recombination, gene transcription or 
translation, follicle development, steroidogenesis, etc. (Jiao 
et al., 2020; Rossetti et al., 2017).

The human WT1  gene (OMIM 607102), located at 
11p13 (GRCh37), encodes a transcription factor involved in 
transcriptional regulation, self-association, and RNA rec-
ognition (Kennedy et al., 1996; Moffett et al., 1995; Reddy 
et al., 1995; Rose et al., 1990). Initially, WT1 was found to 
be expressed at a high level in the glomeruli of the kidney 
and was first known as a tumor suppressor gene for Wilms’ 
tumor in the 1990s (Haber et al., 1990; Pelletier, Schalling, 
et al., 1991). WT1 protein contains a proline/glutamine-rich 
domain at the N-terminus and four zinc fingers in the C-
terminal region (Bardeesy & Pelletier, 1998). A repression 
domain is located within residues 84–179, and an activation 
domain with independent function is between residues 
180 and 294 (Wang et al., 1993). WT1 binds to DNA helix 
through the four carboxyl-terminal Cys2His2 zinc fingers, 
which have bidirectional activities of transcriptional regu-
lation depending on the cellular or chromosomal context 
(Parenti et al., 2015; Ullmark et al., 2018).

To date, WT1 is found to be expressed and functional in 
many tissues, with essential roles in the regulation of ovar-
ian cell proliferation, apoptosis, and steroidogenesis (Park 
et al., 2014; Pelletier, Bruening, et al., 1991; Wang et al., 
2021). For instance, activation of WT1 through the regula-
tion of the upstream activator Bax is necessary for the main-
tenance of granulosa cell survival during the early stage of 
follicles in rats (Park et al., 2014). Multiple steroidogenic 
enzyme-encoding genes have also been reported to be pu-
tative targets of WT1. In mouse ovaries, the mRNA levels of 
P450scc, 3β-HSD, Hsd17b1, Cyp17a1, Star, and Arx were sig-
nificantly increased in Wt1-deficient XX gonads compared 
with those in control ovaries (Chen et al., 2017). Moreover, 
variants in the Wt1  gene in animals are associated with 
ovarian insufficiency. Severe reproductive defects such as 
smaller ovaries and reduced number of follicles were ob-
served in Wt1+/R394W female mice (Gao et al., 2004).

Here, we identified a nonsense variant of WT1 
in a non-syndromic POI patient and her son from a 

non-consanguineous Chinese family through WES data pro-
cessing. Human genome variation databases were utilized 
to investigate the minor allele frequency, and bioinformatic 
tools were utilized to evaluate the pathogenicity. Sanger 
sequencing was performed on the patient and her family 
members to confirm their genotypes. The western blot assay 
suggested that the WT1 variant could encode a truncated 
protein, which might contribute to the development of POI.

2   |   MATERIALS AND METHODS

2.1  |  Study subject and clinical 
evaluations

POI patients were diagnosed at the Affiliated Obstetrics 
and Gynecology Hospital of Fudan University. The crite-
ria for POI diagnosis follow the recommendations pro-
vided by the European Society for Human Reproduction 
and Embryology (2016) (European Society for Human 
Reproduction and Embryology (ESHRE) Guideline 
Group on POI et al., 2016). Women with ovarian surgery 
and radiotherapeutic or chemotherapeutic interventions 
were excluded. A detailed clinical query including envi-
ronment, behavior, diet, and poison exposure was also 
performed. Familial history was ascertained. Written 
informed consent was obtained from participants or the 
parent of participants under the age of 18.

2.2  |  DNA extraction and assessment

Genomic DNA was extracted from peripheral blood 
using the QIAamp DNA Mini Kit (QIAGEN, Hilden, 
Germany) according to the manufacturer's instructions. 
Briefly, optimized buffers and enzymes were used to lyse 
the peripheral blood from the patient, stabilize nucleic 
acids, and enhance the genome DNA adsorption to the 
QIAamp membrane. Then, alcohol was added, and the 
whole lysates were loaded onto the QIAamp spin column. 
Afterward, wash buffers were used to remove impuri-
ties, and pure ready-to-use DNA was then eluted in water 
or a low-salt buffer. Finally, the quality and quantity of 
DNA were assessed by agarose gel electrophoresis and 
SimpliNano (Harvard Bioscience).

2.3  |  WES and data processing

Approximately 1.5 μg of genomic DNA was used to pre-
pare a captured library using an Agilent SureSelectXT 
Human All Exon V6 kit and then sequenced on a HiSeq 
X Ten platform (Illumina). Raw data were aligned to 
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the human reference genome sequence (UCSC Genome 
Browser hg19) with the Burrows-Wheeler Alignment tool 
(http://bio-bwa.sourc​eforge.net/). Variant calling was ac-
complished using the Genome Analysis Toolkit (https://
www.broad​insti​tute.org/gatk/) (McKenna et al., 2010) and 
ANNOVAR software was used to annotate all variants.

The raw data collected from WES were subjected to 
analysis as previously described (Yang et al., 2019). Briefly, 
genetic variants in the exonic and splicing regions were 
chosen. Variant filtering was performed based on a minor 
allele frequency (MAF) ≤0.1% in the 1000 Genomes Project 
(1KG Project; http://brows​er.1000g​enomes.org), Genome 
Aggregation Database (gnomAD; http://gnoma​d-old.
broad​insti​tute.org/), and Exome Aggregation Consortium 
(ExAC; http://exac.broad​insti​tute.org). Predictions of 
deleterious nonsynonymous variants were performed 
using four bioinformatics tools: SIFT (http://sift.jcvi.org), 
PolyPhen-2 (http://genet​ics.bwh.harva​rd.edu/pph2/), 
MutationTaster (http://www.mutat​ionta​ster.org), and 
CADD (http://cadd.gs.washi​ngton.edu).

2.4  |  Variant confirmation

Sanger sequencing was performed to confirm the po-
tential causative variants in the family. Genomic DNA 
was used for variant confirmation. Primers for the WT1 
(NM_024426.6) variant were designed using the “Primer-
BLAST” program (https://www.ncbi.nlm.nih.gov/tools/​
prime​r-blast/). Primer specificity was checked using the 
alignment search tool BLAST (https://www.ncbi.nlm.
nih.gov/blast).

Primer sequences were as follows: forward, 5′–GGAA 	
ACAGTAGGGACCTGGC-3′; reverse, 5′–CAGATGCAGAC 	
ATTGCAGGC-3′. The results of Sanger sequencing were ana-
lyzed using SnapGene 4.2.4 software (Figure 1).

2.5  |  Plasmid construction and 
mutagenesis

Full-length human WT1 cDNA was synthesized (Weizhen, 
Jinan, China) and constructed into the pCMV-FLAG vec-
tor (Takara). Site-directed mutagenesis was performed 
to generate the null variant (c.1387C>T) of WT1 accord-
ing to the instructions of the KOD-Plus-Mutagenesis Kit 
(Toyobo). The relevant primers were as follows: forward, 
5′-TGAAAGTTCTCCCGGTCCGACCACC-3′; reverse, 5′
-CTGACAAGTTTTACACTGGAATGGTTTCACACCTG
T-3′. The recombinant plasmids were verified by direct 
Sanger sequencing prior to functional studies.

2.6  |  Cell culture and transfection

Human embryonic kidney 293T (HEK293T) cells were 
purchased from the Cell Bank of the Chinese Academy 
of Sciences. HEK293T cells were cultured in Dulbecco's 
Modified Eagle's Medium (DMEM) (Gibco) supple-
mented with 10% fetal bovine serum (FBS) (Gibco) and 
1% penicillin–streptomycin–neomycin (PSN) antibiotic 
mixture (Gibco) at 37℃ with 5% CO2. HEK293T cells were 
transfected with the wild-type or mutated WT1 plasmids 
using Lipofectamine 3000 (Invitrogen) according to the 
manufacturer's instructions.

2.7  |  Western blotting

Whole cell lysates were separated by SDS-PAGE and trans-
ferred onto PVDF membranes. After being blocked with 
nonfat milk, each membrane was incubated with specific 
antibodies against different proteins at 4℃ overnight, fol-
lowed by incubation with an HRP-conjugated secondary 

F I G U R E  1   Identification of a WT1 mutation in a Chinese family. (a) A heterozygous WT1 variant (M) was identified in a non-
consanguineous family. The black arrow in the pedigree plot indicates the proband. (b) Sanger sequencing confirmed heterozygous 
WT1 mutations in the proband (W/M). Both of the proband's father and mother are wild type (W/W). The red arrow indicates the mutation 
sites
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antibody. Membranes were visualized using an enhanced 
chemiluminescence kit (GE Healthcare Life Science). The 
images acquired were representative of three independent 
experiments with consistent results. β-actin was used as 
a loading control. The related antibodies included anti-
FLAG (cat. no. F3165, Sigma-Aldrich), anti-GFP (cat. no. 
G6539, Sigma-Aldrich), HRP-labeled anti-β-actin (cat. no. 
HRP–60008, Proteintech), HRP-labeled goat anti-mouse 
IgG (cat. no. I-0031, DingGuo Changsheng Biotech), 
and HRP-labeled goat anti-rabbit IgG (cat. no. IH-0011, 
DingGuo Changsheng Biotech).

3   |   RESULT

3.1  |  Clinical findings

The diagnosis of POI is based on the presence of men-
strual disturbance and biochemical confirmation, in 
brief: (i) oligo/amenorrhea for at least 4  months; (ii) 
an elevated FSH level >25  mIU/ml on two occasions 
>4  weeks aside; (iii) no fallopian tube abnormalities; 
(iv) no radioactive, surgical, or chemotherapeutic in-
jury; (v) no inflammation or autoimmune response of 
the pelvic cavity or reproductive system; and (vi) no 
karyotypic abnormality.

As shown in Figure 1a, a 26-year-old woman (II–
1) diagnosed with POI from a Chinese Han non-
consanguineous family was ascertained in this study 
(Figure 1a). The proband had normal puberty, and men-
arche occurred at 16 years of age. Her menses became 
irregular at 23  years of age and completely stopped at 
26 years of age. Other probable histories including ovar-
ian operation, chemotherapy, radiotherapy, or immune 
disease were all excluded. Physical examination showed 
a normal body mass index. No other known urologic 
diseases (Table S1; Figure 2), endocrinopathies, or auto-
immune disorders (Table S2) were observed for the pro-
band. Transvaginal ultrasonography revealed a normal 
uterus but small ovaries with few antral follicles (Figure 
3). Consecutive hormonal measurements revealed ele-
vated FSH levels. Clinical information regarding the POI 
subjects is summarized in Table 1.

3.2  |  Identification of a rare WT1 variant 
by WES

WES was performed on peripheral blood DNA from the 
patient. Analysis of WES data was performed as previ-
ously described (Yang et al., 2019). Filtering steps and var-
iants identified in each step are shown in Table 2. Among 
all variants called by WES, 11,633 variants of high calling 

quality and sited in exonic and splicing regions were re-
served. Variants with a MAF of more than 0.1% were then 
excluded according to three public human genome varia-
tion databases (1KG Project, ExAC, and gnomAD). Then, 
195 synonymous variants were further excluded. Among 
the 502 remaining variants, 321 were missense, which was 
subjected to functional prediction using in silico tools. 
Relevance to phenotype was considered based on previous 
reports and animal studies. Finally, a heterozygous variant 
of WT1, NM_024426.6:c.1387C>T (p.R463*; rs121907909) 
was identified. This was confirmed by Sanger sequenc-
ing (Figure 1). As shown in Table 3, the allele frequency 
of WT1 c.1387C>T in total population is 0.000006583 
(1/151,896), and the only case is a European male. It is 
predicted to be pathogenic by DANN, MutationTaster, 
and CADD.

3.3  |  Family follow-up and 
genetical analysis

The proband's parents were both healthy without any 
other diseases. Her mother (I–2) was now 51 years old 
and still experiencing a regular period. She also denied 
a history of any reproductive and urological diseases. 
Sanger sequencing revealed that both parents of the 
proband were wild type. Therefore, WT1 c.1387C>T is 
a de novo variant for the proband. Classification of the 
variant was then performed according to the ACMG/
AMP guidelines and this novel variant was classified as 
“pathogenic.”

Additionally, the proband has one son (III–1) and he 
has been diagnosed with Wilms’ tumor and urethral mal-
formation at 7  years of age. Sanger sequencing demon-
strated that he inherited the mutant WT1 variant from his 
mother and a wild-type WT1 allele from his father, so his 
genotype was the same as his mother.

3.4  |  In vitro functional 
characteristics of the WT1 variants

WT1 c.1387C>T variant was located in the ninth exon 
of WT1, and it introduced a premature stop codon in the 
second zinc finger of WT1 (NP_077744.4) (Figure 4a,b). 
The putative impact of the nonsense variant on WT1 
was further investigated in vitro. Recombinant plasmids 
of full-length wild-type and mutated human WT1 were 
introduced into HEK293T cells, respectively. The west-
ern blotting analysis revealed that a truncated protein 
of approximately 51 kDa in cells overexpressing the mu-
tated WT1 (Figure 4c), which was consistent with our 
prediction.
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4   |   DISCUSSION

WT1 is a vital factor in maintaining female gonad develop-
ment (Kreidberg et al., 1993). To date, a few studies have 
focused on how WT1 functions in regulating gonad de-
velopment and female fertility using genetically modified 
animals. Herein, we summarized the female reproductive 
phenotypes from representative mouse models carrying 
different Wt1 variants (Table 4). The targeted total dele-
tion of the Wt1 gene produced mice displaying hermaph-
roditism or gonadal dysgenesis, while heterozygous loss 
induced similar but much milder gonadal developmental 
defects, irrespective of the strain. Furthermore, mice with 
different mutation types differ in manifestations. Some 
showed masculinization with normal fertility while oth-
ers had POI-like phenotypes, indicating that characteri-
zation of different WT1 variants is important in genetic 
analysis of females with ovarian dysfunction.

Genetic variation is one of the main causes of POI (Jiao 
et al., 2018; Persani et al., 2010; Veitia, 2020). In our study, 

F I G U R E  2   Transabdominal 
ultrasound image of the POI subject. 
Ultrasound of the right kidney (a) and 
left kidney (b) from the proband showed 
normal size, structure and position of 
kidneys and ureters

F I G U R E  3   Transvaginal ultrasound 
image of the POI subject. (a) The 
thickness of endometrium. (b) Size of the 
right ovary. (c and d) Size of the left ovary

T A B L E  1   Clinical characteristics of the POI patient affected by 
WT1 variant

Characteristic Proband

First menses (y old) 16

Age of POI (y old) 26

Weight (kg) 53

Height (cm) 158

FSH (mIU/ml) 67.84

LH (mIU/ml) 49.4

PRL (ng/ml) 11.44

E2 (pg/ml) 71

P (pg/ml) 0.5

T (ng/ml) 0.43

Size of ovary (right/left) (mm) 16 × 13 × 10/25 × 23 × 17

Size of follicle (right/left) (mm) Not detected/19 × 16 × 14

Abbreviations: E2, estradiol; FSH, follicle-stimulating hormone; LH, 
luteinizing hormone; P, progesterone; PRL, prolactin; T, testosterone.
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we identified a de novo nonsense variant of the WT1 gene 

in a non-syndromic POI patient through WES. Wang et al. 
have previously identified two novel missense mutations 
and four intronic variants of WT1 in 384 Chinese POI 
women (Wang et al., 2015). Mutations in WT1 can cause 
many different diseases including non-syndromic POI and 
syndromic POI such as Denys–Drash syndrome (Wang 
et al., 2018), WAGR syndrome (Huynh et al., 2017), and 
Frasier syndrome (Barbaux et al., 1997; Klamt et al., 1998). 
For our proband, the heterozygous WT1 c.1387C>T vari-
ant caused non-syndromic POI. As to the son, the renal 
cells might receive a second hit in its remaining functional 
copy of WT1, leading to the development of Wilms’ tumor 
(Cresswell et al., 2016).

WT1 c.1387C>T has been reported in several patients 
with Wilms’ tumor. As shown in Table S3, among all pa-
tients carrying WT1 c.1387C>T, 18 cases are male and the 
other 4 cases are female with highly variable presentations 
in clinic. Particularly, all female patients showed unilat-
eral or bilateral Wilms’ tumor. Additionally, one woman 
showed ovarian dysgenesis and another had cysts in ova-
ries, indicating ovaries of 50% of the female patients were 
affected. By contrast, our proband did not exhibit any 
clinical features of Wilms’ tumor. And her POI symptoms 
were much milder compared to ovarian dysgenesis. So we 

reported an isolated POI patient carrying WT1 c.1387C>T 

for the first time, suggesting that this pathogenic variant 
may only affect the function of ovaries during reproduc-
tive aging process.

Variable clinical features were also found in the male 
patients. Among the 18 cases, 2 (No. 21, 22) were diag-
nosed as Denys–Drash syndrome, 1 (No. 23) was diag-
nosed as Frasier syndrome, and 3 (No. 18, 19, 23) showed 
disorders of sex development without developing tumor. 
And the remaining 12 cases exhibited unilateral/bilateral 
Wilms’ tumor with or without nephrotic phenotypes/uri-
nary tract malformations. It was hypothesized that the 
tumor tissues probably suffered a second hit during the 
gamete or embryonic stage due to specific factors, result-
ing in homozygous mutations or 11p13 loss of heterozy-
gosity in the tumor (Cardoso et al., 2013). As to our male 
patient, the son of the proband, he was diagnosed with 
Wilms’ tumor and urethral malformation at 7 years of age 
without other symptoms, which was similar to several re-
ported patients (No. 1, 2, 8, 9). Additionally, the variable 
clinical characteristics of patients carrying the same WT1 
variants might be related to gender, genetic background, 
environmental factors, and the mechanisms of WT1 mu-
tation, etc. All these findings are important for genetic 
counseling in clinic. And construction of Wt1 knockout or 

Step
Number of 
variants

All variants called by WES 43362

High calling quality 38783

In exonic and splicing regions 11633

Allele frequencies ≤0.001 in databasesa 697

After elimination of synonymous SNVs 502

Nonsense, frameshift, non-frameshift indel, splicing site, or deleterious 
missense variantsb

243

Known pathogenic genes of POI 1
aAllele frequencies were estimated according to 1KG Project, ExAC, and gnomAD databases.
bAll missense variants were assessed using the SIFT, PolyPhen-2, MutationTaster, and CADD tools. From 
those, deleterious variants were selected.

T A B L E  2   Filtering steps and variants 
identified in each step

T A B L E  3   In silico analysis of identified variant in WT1 gene

Gene Mutation type
cDNA 
Changea

Protein 
change

Minor allele frequencyb Functional predictionc

1KG ExAC gnomAD DANN MutationTaster CADD

WT1 Heterozygous c. C1387T p.R463* 0 0 0.000006583 Damaging Damaging 14.003
aThe GenBank accession number of WT1 is NM_024426.4.
bAllele frequencies were estimated according to the 1KG Project, ExAC, and gnomAD databases.
cMutation assessment using MutationTaster and CADD tools. High CADD scores suggest that a variant is likely to have deleterious effects. The CADD cutoff is 
usually set at 4.
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knock-in mice would be beneficial for determining the un-
derlying pathogenic mechanism of WT1 variants in POI.

Abbas et al. have found that mutant WT1 mRNA tran-
scripts that carry premature termination codons were 
sensitive to nonsense-mediated RNA decay (NMD) in 
primary acute myeloid leukemia. According to the “50 bp 
rule”, WT1 c.1387C>T, which is 61  bp upstream of the 
last exon–exon junction, may be likely to escape from 
NMD (Abbas et al., 2010). However, western blotting re-
sults using HEK293T cells further demonstrated that the 
c.1387C>T (p.R463*) variant could produce a truncated 
protein of WT1. The role of the truncated WT1 protein in 

ovarian development is of great value to be addressed in 
future work. WT1  has been found to regulate apoptosis 
and proliferation of immature granulosa cells through 
regulation of the Wnt/β-catenin signaling pathway (Y. 
Wang et al., 2019). These results would probably provide 
some insight into the subsequent specific functional as-
says to investigate the harmfulness of p.R463* altered 
WT1 protein.

Collectively, we report for the first time that a heterozy-
gous c.1387C>T variant of WT1 was associated with non–
syndromic POI and Wilms’ tumor in a Chinese family. 
All our findings provide novel insight into the molecular 

F I G U R E  4   Schematic representation of the WT1 gene and protein. (a) WT1 is comprised of 10 exons. Two alternative splicing sites 
are indicated by red boxes. The black arrows indicate two mutations related to POI from previous report, while the red arrow indicates the 
variant we found. (b) Known functional domains of WT1 protein include the homodimerization domain and DNA/RNA-binding domain 
(zinc finger domain). The inclusion of exon 5 leads to the insertion of 17 amino acid residues into the regulatory domain of WT1, which is 
indicated as “±17AA” in the red box. Four arcs represent the zinc finger domain. The alternative splicing at the end of exon 9 produced the 
tripeptide KTS, which is inserted between zinc fingers III and IV and indicated by a red box. The variant reported by us is marked by a red 
arrow, and two mutations from previous report are marked by black arrows. (c) A truncated WT1 protein with approximately 51 kDa caused 
by the WT1 variant. Western blotting analysis of the WT1 protein expression in HEK293T cells transfected with equal amounts of indicated 
WT1 constructs. GFP was used to evaluate the transfection efficiency and β-actin was used as a loading control
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mechanism of WT1 and genetic counseling for women 
with POI.
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T A B L E  4   Representative studies of Wt1 genetically modified mice with ovarian defects

Index Strain Type Phenotype of ovary Ref

1 C57BL/6 Wt1−/− Complete agenesis of the gonads. Kreidberg et al. (1993)

Wt1+/− Normal in gonad

2 C57BL/6×129/Sv Wt1+/− Smaller ovaries with fewer ova; normal 
appearance and maintenance of corpus 
lutea; no implanted embryos

Kreidberg et al. (1999)

3 129S7/SvEvBrd×C57BL/6J Wt1tm1Asc/tm1Asc Germ cells are fewer and abnormally 
organized; Gonads of XY mice are 
ovarian-like and cryptorchid

Hammes et al. (2001)

Wt1+/tm1Asc Same as homozygous

4 129S7/SvEvBrd×C57BL/6J Wt1tm2Asc/tm2Asc Streak gonad found in both XX and XY 
genotypes and obvious by E12.5; 
abnormal internal genital duct 
development

Hammes et al. (2001)

5 129P2/OlaHsd×C57BL/6 Wt1tm1Mlh/tm1Mlh Agonadal (ovary absent in all E13.5 
embryos) in embryos

Patek et al. (2008)

Wt1+/tm1Mlh Infertile

6 B6/129 Wt1+/R394W Subfertile; ovulation rate significantly 
decreased; ovaries significantly smaller; 
total number of developing follicles 
significantly reduced

Gao et al. (2014)

7 NA Wt1+/− Ectopic development of 3β-HSD-
positive steroidogenic cells; aberrant 
differentiation of somatic cells in 
Wt1-deficient gonads; SF1 expression 
was dramatically upregulated in Wt1-
deficient XX gonads

Chen et al. (2017)

8 C57BL/6 Wt1+/− Loss of sex-specific gene expression 
pattern; reduced proliferating cells in 
XX gonad/mesonephroi explants

Rudigier et al. (2017)

9 129/SvEv×C57BL/6 Wt1+/− Aberrant ovary development; pre-
granulosa cells to steroidogenic cells 
transformation; delayed meiosis 
progression in germ cells; abnormal 
degeneration of wolffian duct in Wt1-
deficient female embryos

Cen et al. (2020)

10 NA Wt1+/R495G Normal and fully fertile Eozenou et al. (2020)

Wt1R495G/R495G Distinct signs of masculinization
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University (Grant nos. 2017–19). Written informed con-
sent was obtained from the patients and their families 
through interviews.
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